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Abstract— Recent advances in deep learning have achieved
exciting results in the ares such as object detection, image
recognition and object localization. However, robotic vision
poses new challenges for applying visual algorithms due to
varying distribution of images from real world and it requires
that the model is able to learn knowledge continuously. This
competition is about developing lifelong learning algorithms
which can be applied to the robotic vision system. This work
describes the approach that we submit to this open competition.

I. INTRODUCTION
Humans have remarkable abilities to learn knowledge

continuously from the real world. One of ultimate goals of a
robotic vision system is to build an artificial intelligent agent
which is capable of understanding the real world based on
their current scenes and their previous knowledge. Object
recognition in the computer vision area has achieved exciting
results [1], [2], [3], [4], where some deep neural networks
(DNNs) even outperform human annotators. However, these
approaches still have limitations when they are applied to a
robotic vision system [5], [6]. First, distributions of image
datasets may vary across categories and tasks. For example,
illumination can vary significantly across time (day time
and night differences). A well-developed approach should
have ability to recognize the object correctly with different
illumination levels. Second, it is not feasible to train a model
by using all images across tasks for a robotic vision system
because it requires more and more computational complexity
when tasks are accumulated i.e., the model needs to be
retrained for all tasks when a new task comes in. This
lifelong robotic vision competition mainly addresses these
two issues that need to be overcame by utilizing the advanced
machine learning algorithms.

II. METHODOLOGY
Lifelong learning represents a long-standing challenge for

machine learning and neural networks due to the learned
model catastrophically forgets existing knowledge when
learning from novel observations [7], [8]. Currently, lifelong
learning contains three main categories: (1) Regularization
approaches, which can alleviate catastrophic forgetting by
imposing constrains on the update of the neural weights [9],
[10]; (2) Dynamic architectures, where this method is intro-
duced to change architecture properties in response to new
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information [11]; (3) Complementary learning systems and
memory replay, which provides the basis for a computational
framework modeling memory consolidation and retrieval in
which the complementary tasks of memorization and gen-
eralization are mediated by the interplay of the mammalian
hippocampus and neocortex [12], [13].

In this work, we utilized the learning without forgetting
(LwF) [7] strategy to this competition. We chose LwF
because it has following advantages: (1) High computational
efficiency, where the LwF only requires image datasets of the
current task and only retains the trained parameters of the
previous one task; (2) Simplicity in deployment. Once a task
is learned, the training data does not need to be retained or
reapplied to preserve performance in the adapting network.

Figure 1 illustrates the training strategy used in our ap-
proach. We deployed a pretrained MobileNet V2 [14], in
which the weights up to the bottleneck are retained as θp
(θp here is fine tuned during training) and we trained the
bottleneck weights from scratch. In order to introduce the
LwF to the architecture, we retain the θold that is trained by
previous tasks in order to construct the regularization term
for training new weights θnew. It should be noted that there
is no replay of previous task images in this structure and only
the update θnew is retained after training which is going to be
used during the testing session. During the experiment, we
find that initializing θp by using the pretrained weights for
each task performs better than using θp continuously trained
by all tasks. Thus we load the initial pretrained weights θp
when processing a new task and θp is going to be fine tuned
during the training. Details of training scheme are included
in Algorithm 1.

Algorithm 1 Training details
Inputs:

Training images X, labels Y of the new task and the
pretrained parameters θp

Initialize:
1: Yold ← Mθ̂p,θold

(X) // Output labels using model
trained by previous tasks. Both θ̂p and θold are updated
by using previous tasks

2: θnew ← Xavier-init(θnew) // Use Xavier initialization for
the bottleneck weights

3: Load the pretrained weights θp to the new model
Train:

4: θ∗p, θ
∗
new ← argmin

θ̂p,θ̂new

(λLold(Y,Yold)+Lnew(Y,Ynew))

5: θold ← θnew // Cache the updated weights which are
going to be used as old weights for the next task.



Fig. 1. LwF training strategy used in this work.

It should be noted that there are some difference between
our approach and the original approach. First, we did not
retain old weights θold for each task. This might deteriorate
the performance for the model but this is closer to the real-
world situation because we do not know which task is going
to be tested. Practical situation requires a unified model
which is able to learn tasks continuously. Our method is also
more computationally efficient during the training compared
to the original method especially when the number of tasks
is huge. Second, instead of fine tuning θp continuously for
each task, we load the pretrained weights to θp for each new
task and then fine tune it. We find this strategy will improve
the performance.

III. RESULTS

We compared our model (MLwF) to model 1 (M1) which
does not deploy any lifelong learning strategy and model
2 (M2) which fine tunes θp continuously as we mentioned
before. Performance of three models is included in Table I.
It can be seen that MLwF achieves the highest accuracy and
this model is our final solution submitted to the competition.

Model Accuracy
MLwF 76.7%
M1 60.9%
M2 74.3%

TABLE I
VALIDATION ACCURACY OF THREE MODELS.

IV. CONCLUSIONS

In this work, we described the approach we used for solv-
ing the lifelong robotic vision challenge. The core backend
of our approach is LwF which was proposed to overcome
the catastrophically forgetting issue arisen from the lifelong
learning. We modified the original approach in order to be
more suitable to deal with this challenge.
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