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Abstract— We propose a new Continual Learning (CL) ap-
proach based on latent rehearsal, namely the replay of latent
neural network activations instead of raw images at the input
level. Experiments show that our approach may save a large
amount of computational time at the cost of a moderate loss
in accuracy.

I. INTRODUCTION

Training on the edge (e.g., on light computing devices such
as smartphones, smart cameras, embedded systems, etc.) is
highly desirable in several applications where privacy, lack
of network connection and fast adaptation are real concerns.
However, in many applications (e.g., robotic vision), training
from scratch a deep model as soon as new data becomes
available is prohibitive in terms of storage/computation even
if performed server side.

In [1] it was shown that some CL approaches can ef-
fectively learn to recognize objects (on CORe50 dataset
[2]) even when fed with fine-grained incremental batches.
However, the accuracy gap w.r.t. the cumulative strategy (a
sort of upper bound obtained by training the model on the
entire training dataset) remains quite relevant (about 20%).

The aim of this work is reducing as much as possible the
gap w.r.t. the cumulative strategy and at the same time pro-
vide an efficient implementation strategy of CL approaches
to enable training on the edge.

II. LATENT REHEARSAL

Rehearsal, which is central in the proposed model, proved
to be an effective approach to contrast forgetting in continual
learning scenarios [3], [4]. In fact, periodically replaying
some representative patterns from old data helps the model
to retain important information of past tasks/classes while
learning new concepts.

Nevertheless, the rehearsal approach has two main draw-
backs, which are particularly critical in mobile or low com-
putational power devices: extra memory and computation.
Storing old patterns requires memory, especially if they are
stored as images. Moreover, the efficiency of the procedure
is highly decreased since, for each training batch, further
rehearsal patterns need to traverse the network forward and
backward, slowing down the training significantly.

With latent rehearsal (see Fig. 1) we denote an approach
where instead of maintaining in the external memory copies
of input patterns in the form of raw data, we store the pattern
activations at a given level (denoted as latent rehearsal layer).
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Fig. 1. Architectural diagram of latent rehearsal.

To keep the representation stable and the stored activations
valid we propose to slow-down the learning at all the levels
below the latent rehearsal one and to leave the levels above
free to learn at full pace. In the limit case where low levels
are completely frozen (the network is pretrained on some
other dataset, e.g. ImageNet) latent rehearsal is functionally
equivalent to rehearsal from the input (hereafter denoted as
native rehearsal), but achieves a computational and storage
saving thanks to the smaller fraction of patterns that need to
flow forward and backward across the entire network and the
typical information compression that the networks perform
at higher levels. In the general case where the representation
layers are not completely frozen the activations stored in the
external memory suffer from an aging effect (i.e., as the time
passes they tend to increasingly deviate from the activations
that the same pattern would produce if feedforward from
the input layer). However, if the training of these level is
sufficiently slow the aging effect is not disruptive since the
external memory has enough time to be rejuvenated with
fresh patterns.

III. PROPOSED APPROACH

While the proposed latent rehearsal is architecture agnostic
hereafter we discuss a specific design with, AR1*, AR1*free
[1], [5] and LwF [6] CL approaches over a MobileNetV1 and
MobileNetV2 CNNs [7], [8].

To simplify the network design and training we keep
the proportion of original and rehearsal pattern fixed: for
example, if the training batches contain 300 patterns and
the external memory 1500 patterns, in a minibatch of size
128 we concatenate 21 (128 · 300/1800) original patterns
with 107 (128 · 1500/1800) rehearsal patterns. In this case



only 21 patterns (over 128) need to travel across the blue
layers in Fig. 1. Concerning the learning slow-down in
the representation layers we found that an effective (and
efficient) strategy is blocking the weight changes after the
first batch (i.e., learning rate set to 0), but leave the batch
normalization moments free to adapt to the statistics of the
input patterns across all the batches.

A. Memory management
In the literature it was shown that a very simple rehearsal

implementation, where for every training batch a random
subset of the batch patterns is added to the external storage
to replace a (still random) subset of the external memory, is
not less effective than more complex approaches like ICARL.
Therefore, in this study we opted for simplicity and the trivial
rehearsal approach summarized in Algorithm 1 is used.

Algorithm 1 Pseudo-code explaining how the external mem-
ory M is populated across the training batches.
Require: M = ∅
Require: Msize = number of patterns to be stored in M

1: for each training batch Bi do
2: train the model on shuffled Bi ∪M
3: h = Msize/i
4: Radd = random sampling h patterns from Bi

5: Rreplace =

{
sampling h patterns from M, if i > 1

∅, otherwise
6: M = (M −Rreplace) ∪Radd

7: end for

IV. EXPERIMENTS
We evaluated both the effect of latent rehearsal against

image-level rehearsal and no-rehearsal strategies, and the
impact of the chosen rehearsal layer. Indeed, the closer is
the rehearsal layer to the input, the more accurate the model
is with respect to image-level rehearsal.

We used the OpenLoris dataset, made available by the
organizers of the IROS Lifelong Object Recognition Chal-
lenge. As a CL strategy we adopted LwF [6], in order to
minimize the extra-computation required at every step. We
used a MobileNetV2 [8] network, with all the layer reduced
to 0.75 compared to the original model. The details of the
experiments are reported in Fig. 2.

To better highlight the dependency of accuracy on the
selection of the rehearsal layer, in Fig. 3 we report an
experiment performed on the CORe50 NIC v2 benchmark
[1]. We adopted a MobileNetV1 [7] trained with the AR1*
strategy [1].

V. CONCLUSIONS
This paper has shown that the use of rehearsal can be

highly beneficial for improving accuracy on CL scenarios,
even if the rehearsal memory management is trivial. At the
cost of some accuracy loss and small memory overhead (few
megabytes), the use of latent rehearsal coupled with a simple
CL strategy may be used to train a model directly on mobile
or low-computational-power devices.
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Fig. 2. Accuracy on the OpenLoris dataset using no rehearsal (only lwf),
image-level rehearsal and latent rehearsal. The replay memory size is 966
patterns for all the experiments. The latent rehearsal layer is the last inverted
residual, with a features size of 7×7×120.

Fig. 3. Accuracy on CORe50 NIC v2 beanchamark [1] for different choices
of the latent rehearsal layer. The accuracy loss produced by layer near the
input is counterbalanced by a considerable computational savings.
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