Selective Feature Learning with Filtering Out Noisy Objects in Background Images

Soonyoung Song, Heechul Bae, Hyonyoung Han and Youngsung Son
Smart ICT Convergence Research Department, ETRI, Korea

Introduction

• Lifelong Robot Vision – Lifelong Object Recognition
 • Human could recognize some objects through pre-built large datasets before and continuous learning in the current environment. But machines are hard to recognize objects in a strange environment and conditions. Therefore machine should update their model weight without distortion of previous model to trained data. In this competition, we propose a selective feature learning method to eliminate irrelevant objects in target images.

Dataset Analysis

• The provided data set of each task were taken in different environment conditions (illumination, Occlusion, Pixel, Clutter)
• Each 69 objects had different sizes and backgrounds. Therefore, reducing the size and background effects should be designed.
• The data sets were analyzed in two ways for design of software architecture
 • Region of Objects (relative scale) :
 • Median relative size = 0.142
 • Relative size difference: 4.14 = object@90% / object@10%
 • Position of Objects (relative scale) :
 • 0.2< center of object < 0.8

Software Design

• Propose a selective feature learning method by eliminating irrelevant features in training dataset.
• Selective learning procedure:
 1) Extracting target objects from training dataset by an object detection algorithm
 2) Feeding the refined dataset into a deep neural network to predict labels.
• Object detection algorithm : SSD (Single Shot Multibox Detection) for convenience of flexible feature network design
 • SSD model with human-annotated dataset in task1
 • Converted the SSD model to a frozen graph to infer object location
• Classification network : traditional MobileNet
 • The refined dataset were fed into the network

Future works

• Lifelong learning of object selection inference graph
 • Update inference technique to each task learning
• Lifelong learning of Feature extraction network
 • Update create and connection neurons under deformation and restoration of the object
• Object selection Deep Learning Neural Network Integration

Acknowledgement
This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean Government. [19ZH1100, Distributed Intelligence Core Technology of Hyper-Connected Space]