

Selective Feature Learning with Filtering Out Noisy Objects in Background Images

Soonyoung Song, Heechul Bae, Hyonyoung Han and Youngsung Son

Smart ICT Convergence Research Department, ETRI, Korea

Introduction

Lifelong Robot Vision – Lifelong Object Recognition

• Human could recognize some objects through pre-built large datasets before and continuous learning in the current environment. But machines are hard to recognize objects in a strange environment and conditions. Therefore machine should update their model weight without distortion of previous model to trained data. In this competition, we propose a selective feature learning method to eliminate irrelevant objects in target images.

Dataset Analysis

- The provided data set of each task were taken in different environment conditions (illumination, Occlusion, Pixel, Clutter)
- Each 69 objects had different sizes and backgrounds. Therefore, reducing the size and background effects should be designed.
- The data sets were analyzed in two ways for design of software architecture
- Region of Objects (relative scale) :
 - Median relative size = 0.142
 - Relative size difference: 4.14 = object@90% / object@10%
- Position of Objects (relative scale) :
 - 0.2 < center of object < 0.8

task7 (206) task8 (206) task9 (206) task10 (206) task11 (137) task12 (206)

Software Design

Propose a selective feature learning method by eliminating irrelevant features in training dataset.

- Selective learning procedure:
 - 1) Extracting target objects from training dataset
 - by an object detection algorithm
 - 2) Feeding the refined dataset into a deep neural network to predict labels.
- Object detection algorithm : SSD (Single Shot Multibox Detection) for convenience of flexible feature network design
 - SSD model with human-annotated dataset in task1
 - Converted the SSD model to a frozen graph to infer object location
- Classification network : traditional *MobileNet*
 - The refined dataset were fed into the network

- Lifelong learning of object selection inference graph
 - Update inference technique to each task learning
- Lifelong learning of Feature extraction network
 - Update create and connection neurons under deformation and restoration of the object

Task 1 Model Training Object Selection (Inference with frozen graph) cottonswab_01: 89% alidation datase/ Task 1 Object Trained Training Selection Model Task 2 (MobileNET) (*SSD*) Task 11 result Validation Task 12

Acknowledgement

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean Government. [19ZH1100, Distributed Intelligence Core Technology of Hyper-Connected Space]

Object selection Deep Learning Neural Network Integration

