

School of Computer Science and Engineering



# Lifelong Object Recognition using Regularization and Data Augmentation

Team : NTU\_LL

## Duvindu Piyasena, Sathursan Kanagarajah, Siew-Kei Lam, Wu Meiqing

## **1. Problem Statement**

Perform Lifelong Learning, when faced with difficulty-incremental learning scenario with changing environmental conditions.

### The objectives are,

- Efficiently retain previous knowledge acquired
- Leverage past knowledge to generalize to new tasks

when continuously learning under difficulty-incremental environmental conditions such as *occlusion, illumination, clutter, pose*, etc.

- **3. Regularization based Lifelong Learning** (Continual Learning through Synaptic Intelligence (ICML 2017) F. Zenke, et al.)
- Regularization based Lifelong approaches broadly can be categorized under
  - Protecting parameters important for previous tasks

# 2. Proposed Method

The proposed method uses

- Regularization based approach to efficiently retain previous knowledge
- Data augmentation tackle data imbalance and invariance to dynamic environment factors



- **EwC** (J. Kirkpatrick, et al. 2016)
- ✤ SI (F. Zenke, et al., 2017)
- Knowledge Distillation based methods
  - ✤ LwF (Z. Li et al 2016)
- We use 'Synaptic Intelligence', based regularization for preserving parameters important for previously acquired knowledge.
- Here, the loss term is augmented with an extra loss reflecting the importance of parameters

 $\tilde{L}_{\mu} = L_{\mu} + c \sum_{k} \Omega_{k}^{\mu} \left( \tilde{\theta}_{k} - \theta_{k} \right)^{2}$ 

- \* The importance of a parameter ( $\boldsymbol{\Theta}_{\mathbf{k}}$ ) for a task ( $\boldsymbol{v}$ ), is a measure of two quantities
  - \* Contribution of that parameter to the drop in loss over entire training trajectory  $(w_k^v)$
  - Change of parameter, after training on task  $v.(\Delta_k^v)$

 $\text{Importance}: \quad \Omega^{\mu}_k = \sum_{\nu < \mu} \frac{\omega^{\nu}_k}{(\Delta^{\nu}_k)^2 + \xi}$ 

# **5. Experimental Results**

| 1 <sup>st</sup> round |                |           |             |       | Resnet_18 | Resnet_50 | Resnet_152 |
|-----------------------|----------------|-----------|-------------|-------|-----------|-----------|------------|
|                       | Parameter      | Round 1   | Final Round | 1.0 - |           |           |            |
| SGD                   | Model          | Resnet-18 | Resnet-18   | -     |           |           |            |
|                       | Batch size     | 128       | 128         | 0.8 - |           |           |            |
|                       | Epochs         | 4         | 5           |       |           |           |            |
|                       | Optimizer      | SGD       | SGD         | 0.6-  |           |           |            |
|                       | Learning rate  | 0.001     | 0.001       | 0.0   |           |           |            |
| Synaptic Intelligence | Regularization | 0.2       | 4           | -     |           |           |            |
|                       | factor(SI)     |           |             | 0.4 - |           |           |            |
|                       | Epochs         | 8         | 8           |       |           |           |            |
|                       |                | 1         | 1           | 0.2 - |           |           | _          |

### 4. Data Augmentation

Data augmentation is used to tackle the *data imbalance problem* and improve generalization of the model, to *prevent overfitting* of the model.

The following are the data augmentations used along with the intended invariances expected to be achieved.

| Image Augmentation | Configuration                                               | Purpose                      |  |  |
|--------------------|-------------------------------------------------------------|------------------------------|--|--|
| Color Jitter       | Random brightness & contrast<br>((b : 0.5,1), (c : 0.5, 2)) | Illumination invariance      |  |  |
| Gaussian Blur      | mean = 0, std. $dev = 0.3$ , $p=0.1$                        | <b>Resolution invariance</b> |  |  |
| Random Affine      | <i>degrees</i> = +/- 10                                     | Camera Pose invariance       |  |  |
| Horizontal Flip    | p = 0.2                                                     | Camera Pose invariance       |  |  |

#### **Final Round**

|                   | Method                                                    |         |  |  |
|-------------------|-----------------------------------------------------------|---------|--|--|
| Final Accuracy(%) | Naive(SGD)                                                | 91.94   |  |  |
| •                 | Cumulative(SGD)                                           | 99.91   |  |  |
|                   | SGD + SI                                                  | 93.08   |  |  |
|                   | SGD + SI + Aug (Color Jitter)                             | 94.11   |  |  |
|                   | SGD + SI + Aug (Color Jitter + Blur)                      | 95.04   |  |  |
|                   | SGD + SI + Aug (Color Jitter + Blur + Affine + Hor. Flip) | 91.11   |  |  |
| Train Time(min)   | SGD + SI                                                  | 215 min |  |  |
|                   | SGD + SI + Aug (Color Jitter + Blur)                      | 269 min |  |  |
| <b>TAT</b>        | DIFIN, Final margarent analysis                           |         |  |  |



### 6. Conclusion

Synaptic Intelligence based Regularization and data augmentation increases generalization of model and helps to reduce overfitting of model to particular environmental conditions

#### www.facebook.com/scse.ntu

www.scse.ntu.edu.sg